martes, 11 de junio de 2013

Bloque IV. Manifestaciones de la estructura interna de la materia

Tema 1. Explicación de los fenómenos eléctricos: el modelo atómico.


  • Proceso histórico del desarrollo del modelo atómico: Aportaciones de Thomsom, Rutherford y Bohr; alcances y limitaciones de los modelos.



Desde la Antigüedad, el ser humano se ha cuestionado de qué estaba hecha la materia.
Unos 400 años antes de Cristo, el filósofo griego Demócrito consideró que la materia estaba constituida por pequeñísimas partículas que no podían ser divididas en otras más pequeñas. Por ello, llamó a estas partículas átomos, que en griego quiere decir "indivisible". Demócrito atribuyó a los átomos las cualidades de ser eternos, inmutables e indivisibles.
Sin embargo las ideas de Demócrito sobre la materia no fueron aceptadas por los filósofos de su época y hubieron de transcurrir cerca de 2200 años para que la idea de los átomos fuera tomada de nuevo en consideración.


AñoCientíficoDescubrimientos experimentalesModelo atómico
1808
John Dalton
Durante el s.XVIII y principios del XIX algunos científicos habían investigado distintos aspectos de las reacciones químicas, obteniendo las llamadas leyes clásicas de la Química.
La imagen del átomo expuesta por Dalton en su teoría atómica, para explicar estas leyes, es la de minúsculas partículas esféricas, indivisibles e inmutables,
iguales entre sí en cada elemento químico.
1897
J.J. Thomson
Demostró que dentro de los átomos hay unas partículas diminutas, con carga eléctrica negativa, a las que se llamó electrones.
De este descubrimiento dedujo que el átomo debía de ser una esfera de materia cargada positivamente, en cuyo interior estaban incrustados los electrones.
(Modelo atómico de Thomson.)
1911
E. Rutherford
Demostró que los átomos no eran macizos, como se creía, sino que están vacíos en su mayor parte y en su centro hay un diminuto núcleo.
Dedujo que el átomo debía estar formado por una corteza con los electrones girando alrededor de un núcleo central cargado positivamente.
(Modelo atómico de Rutherford.)
1913
Niels Bohr
Espectros atómicos discontinuos originados por la radiación emitida por los átomos excitados de los elementos en estado gaseoso.
Propuso un nuevo modelo atómico, según el cual los electrones giran alrededor del núcleo en unos niveles bien definidos.
(Modelo atómico de Bohr.)


  • Características básicas del modelo atómico: núcleo con protones y neutrones, y electrones en órbitas. Carga eléctrica del electrón.


Características básicas del modelo atómico:

Un modelo atómico es una representación gráfica de la materia a nivel atómico.

Núcleo con protones y neutrones: los protones son partículas de carga eléctrica positiva, los neutrones no tienen carga. 

Electrones en órbitas: tienen carga negativa, en cada órbita sólo cabe un número preestablecido de electrones.


Carga eléctrica.


Los átomos están constituidos por un núcleo y una corteza(órbitas) En el núcleo se encuentran muy firmemente unidos los protones y los neutrones. Los protones tienen carga positiva y los neutrones no tienen carga. Alrededor del núcleo se encuentran las órbitas donde se encuentran girando sobre ellas los electrones. Los electrones tienen carga negativa.



Ambas cargas la de los protones(positiva) y la de los electrones(negativa) son iguales, aunque de signo contrario.


La carga eléctrica elemental es la del electrón. El electrón es la partícula elemental que lleva la menor carga eléctrica negativa que se puede aislar. Como la carga de un electrón resulta extremadamente pequeña se toma en el S.I.(Sistema Internacional) para la unidad de Carga eléctrica el Culombio que equivale a 6,24 10E18 electrones.


Para denominar la carga se utiliza la letra Q y para su unidad la C.
Ejemplo: Q = 5 C



En la tabla adjunta se muestra la masa y la carga de las partículas elementales.

Para el estudio de la electricidad nos basta con este modelo aproximado del átomo, con sus partículas elementales(electrón, protón y neutrón). Los protones son de carga eléctrica positiva y se repelen entre sí. Los electrones son de carga eléctrica negativa y se repelen entre sí. Los neutrones no tienen carga eléctrica.

Entre los electrones y los protones se ejercen fuerzas de atracción. Puesto que los electrones giran a gran velocidad alrededor del núcleo existe también una fuerza centrípeta que tiende a alejar del núcleo a los electrones. Entre dichas fuerzas se establece un equilibrio, de tal manera que los electrones giran en las órbitas y no son atraídos por los protones del núcleo y tampoco se salen de sus órbitas.





  • Atracción y repulsión electrostática.
La materia contiene dos tipos de cargas eléctricaspositiva y negativa. Si frotas dos objetos uno adquiere un exceso de carga negativa y el otro adquiere un exceso de carga positiva.


Dos objetos con carga positiva se repelen. Dos objetos con carga negativa también se repelen, pero un objeto con carga positiva atraerá a un objeto con carga negativa.



  • Corriente y resistencia eléctrica. Materiales aislantes y conductores.

La resistencia eléctrica es la oposición que ofrece un material al paso de los electrones (la corriente eléctrica).
Cuando el material tiene muchos electrones libres, como es el caso de los metales, permite el paso de los electrones con facilidad y se le llama conductor.
Ejemplo: cobre, aluminio, plata, oro, etc..
Si por el contrario el material tiene pocos electrones libres, éste no permitirá el paso de la corriente y se le llama aislante o dieléctrico
Ejemplo: cerámica, bakelita, madera (papel), plástico, etc..
Los factores principales que determinan la resistencia eléctrica de un material son:
- tipo de material
- longitud
- sección transversal
- temperatura
Un material puede ser aislante o conductor dependiendo de su configuración atómica, y podrá ser mejor o peor conductor o aislante dependiendo de ello.

  • Aislantes



  • Conductores 


Referencias: imagenes obtenidas de Google buscador de imagenes, conceptos del libro "Física coceptual".






No hay comentarios:

Publicar un comentario